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Formulas are obtained that are suitable for finding the asymptotic law of boundary 
motion in Stefan-type problems for an arbitrary (including nonlinear) condition on 
the boundary mentioned without a preliminary determination of the temperature field. 

Stefan-type problems on determining the front propagation velocity (reaction, phase 
transition front, etc.) can be reduced to solving a functional equation describing the re- 
lationship between the dependent variable (temperature, concentration), its gradient on the 
moving boundary, and an additional physical condition (see [I, p. 56], say). An attempt is 
made in this paper to find the dependence between the quantities Ts(t) , qs(t), and l(t) for 
large times. We set up such a dependence for "small" and "medium" times earlier [2, 3] for 
the case of a semiinfinite domain. Certain functional relationships are found in [4, 5] for 
a finite domain under the condition of a particular kind on the moving boundary. Below we 
obtain these relationships by a substantially different method that does not require 
specification of the physical condition. 

i. SEMIINFINITE DOMAIN 

The heat transfer in a coordinate system coupled to the moving boundary is described 
by the differential equation 

O~T OT OT - -  a - -  - -  /: (t) - -  = 0 ,  O < x < o o ,  O < t < o o ,  
Ot Ox z Ox 

Tl~=0 -- T,(t), Tl~-_oo = 0 ,  Tlt=o = O. (i) 

The functional relationship between the boundary temperature T s and its gradient on the 
boundary qs = (;T/;x)x=o was found earlier in the form of a series [2] 

[ i 12 D_,/~__ l-D-' --( J~ II ) ] 
- - F a q ~ =  O ' / 2 + 2 ~  + 8a 8 g a  12~-~z - 6 ~  D-3/2+' ."  T~. (2)  

A recurrent relationship governing the multipliers for the operaeors D -n/2 was also pre- 
sented in [2]. 

The fractional differentiation operators are defined by the expression 

t 

DV(O i d F(1 - -v )  dt (t--~)-vf(T)dT, - - - o o < v < ~  I. (3)  
0 

For ~ < 0 an equivalent definition can be obtained by integration by parts 

t 

Dr[ (t) F (--v)  (t - -  ~ ) - v - , [  (~) d% - -oo  < v <  0. (4)  

0 

We use the following properties of the fractional derivative below: 
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~. o( ~) d"f(t) DV-'g(t)' (5) O"[(t) g(t)----- = n ' dt" 

D"#= r (~+ l )  f'-~, ~ + v - - l > O ,  (6) 
r(~+ 1--~) 

The convergence  of  the  s e r i e s  (2) f o r  s u f f i c i e n t l y  g e n e r a l  c l a s s e s  of  f u n c t i o n s  has  no t  
been e s t a b l i s h e d ;  however,  i t  can be shown t h a t  i f  the  terms of  t h e  s e r i e s  d e c r e a s e  as  t + 0 
or  t + = so t h a t  an+a /a  n + O, t hen  t h e r e  i s  a t  l e a s t  a s y m p t o t i c  convergence  f o r  s u f f i c i e n t l y  
small and large values of t. 

We later assume that Ts(t) and l(t) are monotonically increasing functions of the time, 
the case T s = const ~s also possible; Z(t) has all derivatives with respect to t. We show 
that the limiting relation of T s and qs is represented by two general and two special forms 
depending on the rate of growth of T s and 1 as t § ~. We assume the surface temperature to 
grow not more rapidly than t ~, 0 ~ ~ < ~ as t § ~; the derivatives of T s also grow no more 
rapidly than the derivatives os t~. 

Let us consider the general case of l(t)t -~/2 § 0 as t -~ ~ (the front is propagated 
more slowly than t*/a). Substituting the majorizing function l(t) = t V in (2), taking 
account of (6) and (4), we have 

--V"d'q~-- I~(i~+ 1) t"-"T" v u+ 2v--2-3 ~(v- -1 )  F(I~-F 1) ta+v_l 

F- 
As t § = the first term of the series is dominant for 0 ~ ~ < i/2. Therefore, the rela- 
tionship between T s and qs has the form 

~ V"aqs(t) ~ DI/2Ts(I), t-+co. (7) 

It is possible to arrive at an analogous deduction by setting 1 = tx/2/In t. 

Relationship (7) is indepndent of the velocity of front propagation and agrees in form 
with that for the case when the heat is propagated in a fixed medium. 

If l(t)t -x/a + | as t -~ ~ (the front propagates more rapidly than t x/2), the members 
of the series (2) increase in absolute value with growth of the number for t § =; however 
one of the components is dominent in each factor for the different operators D -V. By dis- 
carding inessential terms, we arrive at the expression 

--V'-d'qs'~['2"~+ =~o [Tn ) l ~ )  D2 8 ~ a , ~ o  ( - 1 , ~ = :  \ 4a ] IT,, t-+co. (8) 

Using (4) and (5) it can be seen by direct substitution that (8) is the finite expres- 

sion 

] 
--:-exp , 4a J l JT~' 

t 

[ exp (t--T) T~(~)d~. (9) J2 ~ 8 V-----~. 4a 
0 

The symbol ( )* i n d i c a t e s  t h a t  i n  the  c a l c u l a t i o n  of  D ~]2 by means o f  (3) w i t h  the  q u a n t i t y  
12/4a it should behave as a constant independent of t. 

It can be shown that as /-+co J1-+(//21/a-)Ts, J2-+(l~a/212)Tv It is seen that J2/Jx ~ 
O. Conserving the terms dominant as t ~ ~ in (9), we obtain the desired relationship be- 
tween the temperature and its gradient at the boundary 

--aq~(t) ~ l (t) T~(t), t--+ co. (10) 

The latter corresponds in shape with the stationary dependence for Ts, qs, ~ = const. 
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For 9 ~ i dependence (I0) can be obtained by the method elucidated in [7] in applica- 
tion to our problem. Multiplying the heat-conduction equation (written in a fixed coordi- 
nate system) by exp(--~x) and integrating between the limits (/(t), ~) we obtain the rela- 
tionship 

oo t 

t(O o 

Setting p = 0 and noting that t~Tdx._~const.Ts~ (this latter is easily established by 

integrating the initial equation for v = I), we arrive at the deduction that the second in- 
tegral cannot grow more rapidly than Ts, for which satisfaction of the relationship (i0) as 
t + ~ is required. 

In the intermediate case when the boundary moves according to a parabolic law 
(/(t)t -x/2 § 8 = const as t + ~), all the terms of the series (2) are of identical order. 
It is seen that the relationship between T s and qs 
(7) and (i0) 

- -  Ir aq~ (t) ,~ C, (~) D ' /~ T~ (t) ,~ C 2 

can be written in terms similar to both 

o. i(~ 
m ~ r~ (t), t - +  ~o. (11)  

J ~ ( : t  

The distinction is in the constant factor Cx and Ca for whose determination we have no simple 
methodology. Known methods of solving the problem (i) for I = Bt ~12 should be used [8, 9]. 

Now, let us examine the case when the surface temperature T s is an "exponential growth" 
function, that grows for t § ~ as exp at or t~exp at, 0 ~ ~ < ~. 

Let us assume that /(t)t -t § 0 as t + ~ (the front is propagated more slowly than t). 
Substituting the majorizing function I = t 9, 0 ~ 9 < i in (2) and taking into account the 
for t + ~ D 9 t ~ exp~t § t~a 9 exp at we find that the first term of the series is dominant 
and, therefore, the asymptotic relationship (7) is satisfied. In the ease when /(t)t -t + 
as t § ~ (the front is propagated more rapidly than t), an analysis of (9) results in the 
dependence (i0). 

For the intermediate case /(t)t-* § B = eonst as t § ~, the problem (i) is solved 

easily: 

4a (12) 

The expression (12) can be written in one of the forms (ii). 

Therefore, critical values of the front propagation velocity have been established for 
which the law relating Ts, qs, and 1 changes form. For the critical values the form of the 
relation differs from that for the mentioned general cases. 

For the problem 

2. FINITE DOMAIN 

0 O" ) 
~ - - a - - .  T ~ O ,  O < x <  l( t ) ,  O ~ . i < o ~ ,  
Ot Ox ~" 

Tlx=o = T~(t),  TIx=lr = O, TIt=o =- 0 (13) 

after substituting ~ = x//(t), T = t, the "stopping boundary" [i0], we obtain 

a ~(~) a a a 2 1 
0 < ~ < I ,  (14) O<~<oo. 

This latter equation is later used for the analysis. 

Let us turn attention to the fact that we seek limit relationships on this section only 
on the fixed boundary of an expanding domain (x = 0), by keeping in mind that the relation- 
ship on the moving boundary (x = /(t)) can be obtained analogously to (18) for "slow" mo- 
tion, while for "rapid" motion it agrees with that for the semiinfinite domain~ 
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Let us examine the case when T s is a "power-law growth" function. If l(t)t -*/2 + 0 as 

t § =, by selecting the majorizing function in the form l = t 9, 0 ~ 9 < 1/2, T s = t~, we 
arrive after the substitution [i0] z = ~*-2~/(i -- 2~) at the problem 

( a  v ~ o o 2 ) 
Oz 1--2v z O~ a o------ ~ T = 0 ,  0 < ~ < 1 ,  O < z < c r  

T~(z) = [(1 - - 2 v ) z ]  ~/(l-2v), T[~.::I :.: 0, Tl~.::o = 0. (15)  

We see by direct substitution that the function 

T = [(1 - -  2~) z] ~/(~-2v~ (1 - -  ~) (16)  

is the solution (14) for z + ~ if the inequality 

is satisfied. 
relationship 

--q~ (t) .~ T, (Off (t), t -+ co, (18)  

which agrees in form with the quasistationary solution. 

According to (16), the temperature gradient is constant in the whole domain for t § 
and is determined from (18). By writing the latter for x = l(t), it may be able to compare 
with the result from [6], where it is shown that the following relationship is satisfied on 
the moving boundary (in our notation) 

~=~ (2n)t dt n \ a / (Lp/X)a ' 

OTox [~_-z(o : - -  (Lp/~) l, T J~=t(~) = 0. 

As t + ~ only the first term is retained in the sum for v < i/2 and by combining the 
formulas written down, we obtain (18), valid for any ~, exactly. Therefore, the constraint 
(17) is removed. 

In the special case 1 = 8t, ~ = const, the solution of (14) with the conditions (13) 
can be found by the method in [i0], which results in a final expression analogous to (7). 
Therefore, in a domain expanding according to a linear law, the temperature gradient on 
the fixed boundary is the same for t § = as in the fixed semiinfinite domain. 

In considering the general case l(t)t -~/2 § = as t § = we set l(t) = t v, 1/2 < v < =. 
Then after the substitution z = ~-29/(i -- 2~) we rewrite (14) in the form 

(0..0_~ v ~ 0  0 2 ) 
a - - .  T = 0 ,  0 < ~ < 1 ,  - - ~ < z < 0 .  (19)  

Oz 2 v - - 1  z O~ O~ z 

P h y s i c a l l y  i t  i s  e v i d e n t  t h a t  t h e  law ( 7 ) ,  e s t a b l i s h e d  a b o v e  f o r  v = 1 ,  i s  a l s o  s a t i s -  
f i e d  f o r  v > 1 s i n c e  i f  t h e  h e a t  i n  a domain  e x p a n d i n g  a c c o r d i n g  t o  a l i n e a r  l aws  i s  p r o p a -  
g a t e d  as  i n  a s e m i i n f i n i t e  domain  a s  t + ~ ,  t h e n  e v e n  more  s u c h  a r e g u l a r i t y  ~ i l l  be  s a t i s -  
f i e d  for domains expanding more rapidly than t. 

For 1/2 < 9 < | the numerical factor v/(2v -- i) on the first derivative %ith respect 
to the coordinate in (19) varies between the limits = and 1/2. Since solutions of this 
equation are analytic functions of the parameter ~/(29 -- i) within the mentioned limits, the 
relationship (7), which is valid for i ~. ~ < ~, is also valid for 1/2 < 9 < ~. In the 
special case l(t)t -*/2 § 8 = const, the desired relationship can be written for t + = in a 
form analogous to (ii): 

- -  VEq, (t) ,~ C. (~) D ' / 2 L  (t) ~ C, (~) T, (t)/l (t), t --~ co, 

where the constants C3 and C4 can be determined by the known methods in [9]. 

If T s is an "exponential growth" function for the case ~ < 1/2 as t ~ ~ we did not ob- 
tain the relationship between Ts, qs, and I. Consideration of the particular case l(t)t -~ 
8 results in (7). For the general case l(t)t -I/2 § ~ as t + ~ reasoning analogous to that 
presented above yields the relationship (7). 

o~<t~< 1--2,, (17) 

After going from (16) over to the initial variables, we obtain the desired 
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Therefore~ in contrast to Sec. i, the constant velocity of front motion is not critical 
for the relationship on the fixed boundary. The case Z(t)t -*/2 § 8 = const as t § ~ is in- 
vestigated by known methods of [9]. 

NOTATION 

a, thermal diffusivity; an, terms of the series in (2); C, constants; D u, fractional 
differentiation symbol; f, g, arbitrary functions of the time; q, temperature gradient; l, 
coordinate of the moving boundary; T, temperature; L,heat of the phase transition; t, time; 
x, coordinate; z, variable dependent on the time; =, 8, constants; ~, ~, constant exponents 
in the power laws; p, density; %, heat conduction; ~, dimensionless coordinate; ~, variable 
of integration, time; s, surface x = 0 or ~ = 0; the dot denotes differentiation with respect 
to the argument. 
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